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Abstract

Neutral geometry is of increasing interest. As with Riemannian and Lorentzian geometry, spinors can
be expected to provide a valuable tool in neutral geometry. For a neutral metric in four dimensions, the
classification of the Weyl curvature spinors by the pattern of principal spinors each admits is given. For each
Weyl curvature spinor, there are nine nontrivial types. This classification is then related to the classification,
given previously by the author, of a Weyl curvature spinor when regarded as a curvature endomorphism
(four types). These results are the neutral analogues of well known and fundamental results in Lorentzian
geometry, but display the peculiarities of neutral geometry. One can expect these results to be an essential
ingredient in a full understanding of neutral geometry in four dimensions.
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1. Introduction and notation

There is growing interest in neutral geometry, i.e., the geometry of pseudo-Riemannian
manifolds equipped with a metric of signature (n, n). Matsushita [29–31], and reviewed in [33],
studied existence conditions for neutral metrics in four dimensions admitting a reduction of
the orthogonal group O(2, 2) to its identity-connected component SO+(2, 2); in particular,
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such a reduction entails the existence of a pair of almost complex structures which induce
opposite orientations and thus falls naturally into the (almost) complex category. Law [22,23]
emphasized the role of the neutral orthogonal group NO(n) (of all orthogonal and anti-orthogonal
transformations) in neutral geometry. Matsushita and Law have studied the classification of
curvature for neutral metrics in four dimensions and the analogue of the Thorpe–Hitchin
inequality for neutral Einstein metrics on compact four-manifolds [21,35].

One of the intriguing aspects of neutral geometry is the occurrence of parallels with
Riemannian geometry in the context of indefinite signature, already evident in [21]. Others have
studied various neutral analogues of features of Riemannian geometry: parallel mean curvature
surfaces [14]; self-dual metrics in four dimensions [19,15,6,4]; Kähler geometry [39,43,17,18,
7]; hyperKähler geometry [13,16,9,7].

Standard geometrical topics have also attracted attention, e.g., holonomy [2,10] and Jacobi
operators [3,8]. Recently, Matsushita and coworkers [32,5] began a study of neutral four-
manifolds admitting a field of parallel totally null planes, exploiting the canonical form of the
metric in such circumstances provided by Walker [44]. This condition is very natural in neutral
geometry and has already yielded the result that the almost complex structure of a compact almost
Kähler–Einstein neutral manifold need not be integrable, i.e., ‘Goldberg’s conjecture’ [11] fails
for neutral signature, see [34].

There is also a real version of twistor theory for neutral signature in four dimensions
which has been investigated sporadically, for example [12,47,6,26], but also plays a role
in integrable systems, for example via the Jones–Tod correspondence which yields three-
dimensional Lorentzian Einstein–Weyl geometries by a symmetry reduction on appropriate
neutral four-manifolds, see [28,6], but also [27].

Neutral geometry is also the real geometry underlying smooth and holomorphic complex
Riemannian geometry, see [46,42,41,24].

Possible applications of neutral geometry in physics have stimulated some of the above work,
and more [36]; see [45] for a recent example of the use of (+ + −−) signature in string theory.
This brief literature review, which is not intended to be exhaustive, indicates an interest in neutral
geometry that is, I believe, well deserved. Familiar features of Riemannian geometry, subtly
warped by neutral signature, illuminate both Riemannian and neutral geometry.

Spinors have proven a powerful tool in both Riemannian [25] and Lorentzian geometry [37,
38] and have already attracted interest in neutral geometry [47,6]. In this paper I classify the
algebraic structure of the Weyl curvature spinor of a neutral metric in four dimensions and relate
this classification to that of the Weyl curvature endomorphisms in [21], thereby providing the
neutral analogue of well known results in general relativity [38]. This particular feature of neutral
geometry has, of course, no parallel in Riemannian geometry.

I denote by Rp,q the pseudo-Euclidean space consisting of Rp+q equipped with the scalar
product whose components with respect to the standard basis form the diagonal matrix, the first
p diagonal entries of which are all 1, the remaining q being −1. The Clifford algebra of Rp,q

I denote by Rp,q . Similarly, Cn denotes the Clifford algebra of Cn equipped with the standard
C-bilinear dot product. By K(n) I denote the algebra of n × n matrices with entries in K (R or
C). For any K-linear space V , V• shall denote the dual space; and for any homomorphism T , T•

the dual mapping. When V is finite dimensional and equipped with a (K-bilinear) scalar product
s, the scalar product provides an isomorphism between V and V• which intertwines between the
natural actions of the ‘orthogonal’ group of (V, s) on V and V•. In this context, as usual, one
may use the covariant or contravariant form of an abstract index as convenience dictates.
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2. Spinor algebra

As is well known, see, e.g., [40,38,25], C2k ∼= C(2k) as algebras, with the even part of the

algebra C0
2k

∼= C2k−1 ∼=

(
C(2k−1) 0

0 C(2k−1)

)
, which entails that Spin(2k;C) acts reducibly on

C2k−1
⊕ C2k−1. Writing these summands as S and S ′, then C2k ∼= EndC(S ⊕ S ′). Moreover

C2k itself has a copy lying in the odd part of C2k :
(

0 Hom(S ′,S)
Hom(S,S ′) 0

)
. Now, the equation

dimC(Hom(S ′,S)) = 22k−2
= 2k = dimC(C2k) has the unique integral solution k = 2, i.e., for

k = 2 only does one obtain C2k ∼= Hom(S ′,S) thereby permitting an identification of V = C4

with S ⊗ S ′
•. This observation is the basis of the complex two-component spinor formalism [37,

38] and its real forms.
In the case of interest here, R2,2 ∼= R(4) and one can obtain a concrete representation as

follows. Putting

A :=

(
0 1

−1 0

)
B :=

(
−1 0
0 1

)
C :=

(
0 1
1 0

)
, (1)

then A, B and C anticommute with each other and ABC = 12. Now put

E1 :=

(
02 A
A 02

)
E2 :=

(
02 12

−12 02

)
E3 :=

(
02 C
C 02

)
E4 :=

(
02 B
B 02

)
. (2)

The Ei anticommute with each other, and satisfy −12 = (E1)
2

= (E2)
2

= −(E3)
2

= −(E4)
2

and Λ := E1 E2 E3 E4 =

(
12 02
02 −12

)
. Thus, {E1, E2, E3, E4} generate R2,2 as an algebra

and serve as a pseudo-orthonormal (9-ON) basis for a copy of R2,2 within R2,2. Explicitly,
(u, v, x, y) ∈ R2,2 is identified with

uE1 + vE2 + x E3 + yE4 =

(
02 Z

−
∗Z 02

)
Z :=

(
v − y x + u
x − u v + y

)
, (3)

where ∗Z denotes the adjoint of Z wrt the symplectic plane R2
sp (in matrix form taken with

respect to the standard basis).
Now Λ splits the pinor space into the direct sum decomposition S ⊕ S′, each summand

a copy of R2, and thereby introduces a 2 × 2 blocking of elements of R(4). As usual, use
unprimed indices for elements of S and primed indices for elements of S′, but note that these
two spaces are independent; there is no mapping from one to the other. By a general property
of Clifford algebras, Λ commutes with the even subalgebra R0

2,2 and anticommutes with the

odd part, whence R0
2,2

∼=

(
R(2) 02
02 R(2)

)
. Clifford conjugation, i.e., the algebra anti-involution

induced by the negative of the identity transformation of the copy of R2,2 in R2,2 is given by,
with α, β, γ, δ ∈ R(2),(

α γ

β δ

)−

:=

(
∗α ∗β
∗γ ∗δ

)
, (4)

where ∗α, etc., are again the adjoints with respect to R2
sp. It follows that

Spin+(2, 2) ∼=

(
SL(2; R) 02

02 SL(2; R)

)
, (5)
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and each spin space is to be identified in fact with a copy of R2
sp. The symplectic forms will be

denoted by ε and ε′ (in the latter case, when indices are employed, the prime will be attached to
the indices and not the ε). Moreover, the vector representation of Spin+(2, 2) is given by(

α 02
02 β

) (
02 Z

−
∗Z 02

) (
α−1 02

02 β−1

)
=

(
02 αZβ−1

−
∗(αZβ−1) 02

)
,

exploiting SL(2; R) = Sp(2; R).
It suffices to consider (α, β).Z = αZβ−1 for the vector representation. Now Z ∈

Hom(S′, S) ∼= S ⊗ S′
•. One can therefore use the correlation ε′ : S′

→ S′
• (actually its

inverse) to obtain an identification of R2,2 with S ⊗ S′. Putting X := Z(ε′)−1, then, as
β ∈ SL(2; R) = Sp(2; R), αZβ−1(ε′)−1

= αZ(ε′)−1ε′β−1(ε′)−1
= αXε′β−1

•• (ε
′)−1

=

αX ∗(β−1
• ) = αXβ• = αβX . Concretely,

X AA′

:= Z A
B′ε

A′ B′

=

(
u + x y − v

y + v u − x

)
, (6)

and the vector representation takes the matrix equation form

(α, β).X = α.X. τβ, (7)

where τβ denotes the transpose of β. This form is compatible with the familiar two-component
complex spinor formalism [37,38] (though it is customary to insert a factor of 1/

√
2 on the far

right hand side of (6)); the natural action of SL(2; R) on S ⊗ S ′ induced from the action on
each spin space thus translates directly into the vector representation of Spin+(2, 2) on R2,2

via the identification with S ⊗ S ′ provided by X , with the quadratic form given by a suitable
multiple of the determinant of X . In particular, when X = ξ ⊗ η, ξ ∈ S, η ∈ S ′, then (7) is
X 7→ (α.ξ)⊗ (β.η).

Much of the familiar two-component spinor formalism of [37] carries over for R2,2, adjusting
for the reality of the spin spaces. For example, the null cone K of the origin in R2,2 is foliated
(strictly speaking, when the vertex is excluded) by each of two families of totally null planes,
each family parametrized by SO(2). The members of one of these families (α-planes) may be
described as Zθ := {(z, Rθ (z)) ∈ R2,2

: z ∈ R2
}, Rθ ∈ SO(2) the standard rotation through θ ,

which under (6), and writing z = (u, v), is

Zθ =

{
ηAπ A′

: π A′

=

(
cos(θ/2)
sin(θ/2)

)A′

, ηA
= u

(
cos(θ/2)
sin(θ/2)

)A

+ v

(
−sin(θ/2)
cos(θ/2)

)A
}
.

Note that Zθ is characterized by the projective class of π A′

, so one could equally well write Z[π ],

while ηA varies over all of S, and that as θ : 0 → 2π , π A′

:

(
1
0

)
→

(
−1
0

)
, manifesting the

two-valuedness of spinors.
The elements of the other family (β-planes) may be written as Wθ = {(w, Lθ (w)) ∈ R2,2

:

w ∈ R2
}, where Lθ = T Rθ , T ∈ O(2) \ SO(2). With w = (u, v) and T (u, v) := (−u, v),

under (6),

Wθ =

{
π AηA′

: π A
=

(
sin(θ/2)
cos(θ/2)

)A

, ηA′

= u

(
sin(θ/2)
cos(θ/2)

)A′

+ v

(
cos(θ/2)
−sin(θ/2)

)A′
}
.
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Hence, there is an S1’s worth of α-planes lying on K , and each contains an S1’s worth of null
directions through the origin. Any two of these α-planes intersect only at the origin, and the null
directions fill out K , i.e., as is well known, the quadric Grassmannian of lines on K is S1

× S1.
The same is true of the β-planes lying on K . Any one of these α-planes and any one of the
β-planes has a null direction through the origin as their intersection. This structure is repeated
for each null cone with vertex an arbitrary point of R2,2, giving rise to the families of affine α-
and β-planes.

As noted, Zθ = Z[π ] determines π A′

only up to scale. The anti-self-dual (ASD) two-form
Fab := εABπA′πB′ , which as an element of Hom(R4, (R4)•) has Z[π ] as kernel, determines π A′

up to sign.
It will be convenient to write, in general, ε(αA, βB) = εABα

AβB
=: β · α.

Since my aim in this paper is the classification of the Weyl (curvature) spinor, consider totally
symmetric spinors: ΦAB...M

= Φ(AB...M). As usual, by virtue of the fundamental theorem of
algebra, one can write

ΦAB...M
= α(AβB . . . µM), (8)

where one must allow for the possibility of complex spinors in this representation, i.e., elements
of CS, which of course will occur in complex conjugate pairs. If αA

∈ CS, write αA
= γ A

+iδA,
γ A, δA

∈ S. Then α · α = 2i(γ · δ). Since γ · δ = 0 is equivalent to αA
= zγ A, for some z ∈ C,

i.e., αA is just a complex multiple of a real spinor, I shall assume that any complex spinor αA

appearing in a decomposition such as (8) satisfies

α · α 6= 0. (9)

The solutions of (8) will be called principal spinors of ΦAB...M , which are determined only
up to scale of course. Unlike in the Lorentzian case, however, there is no notion of principal null
direction. A totally symmetric rank two spinor ΦAB

= α(AβB) is called null iff β ·α = 0. A null
ΦAB has a real principal spinor. As ΦABΦAB = −(β · α)2/2,

nullity ⇔ ΦABΦAB = 0. (10)

My considerations in this paper will be entirely local; but it is clear that to employ the notion
of spinors transforming under Spin+(2, 2), i.e., a spinor structure, necessitates a reduction
of O(2, 2) to SO+(2, 2) in the relevant circumstances. For global applications, one requires
such a reduction to SO+(2, 2) for the frame bundle of the manifold, in which case the
remaining obstruction to a spinor structure on the manifold is the nonvanishing of the second
Stiefel–Whitney class of the tangent bundle [20,1].

3. The Weyl curvature spinors

The spinor form of the curvature tensor of a neutral metric in four dimensions is derived
formally exactly as in [37], except that the various curvature spinors are all real. In particular, the
Weyl conformal curvature takes the form Cabcd

= 9 ABC DεA′ B′

εC ′ D′

+ 9 A′ B′C ′ D′

εABεC D ,
where 9 ABC D and 9 A′ B′C ′ D′

are independent, real totally symmetric spinors belonging to
S ⊗ S ⊗ S ⊗ S and S ′

⊗ S ′
⊗ S ′

⊗ S ′ respectively, called the Weyl curvature spinors. In
particular,

−Cabcd
:= 9 ABC DεA′ B′

εC ′ D′ +Cabcd
:= 9 A′ B′C ′ D′

εABεC D, (11)
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are called the ASD and SD parts respectively. It will suffice to consider the ASD part and the
corresponding Weyl spinor 9 ABC D . By (8), one can write

9 ABC D
= α(AβBγ CδD), (12)

where αA, βB , γ C , δD will be called Weyl principal spinors, abbreviated as WPS.
For arbitrary spinors ξ A

∈ S, ηA′

∈ S ′, put va
= ξ AηA′

, a null vector. By a straightforward
adaptation of the argument in [38, p. 224], one finds: ξ A is a WPS of a nonzero 9 ABC D iff

9ABC Dξ
Aξ BξCξ D

= 0, equivalently v[ f
−Ca]bc[dve] v

bvc
= 0; (13a)

of multiplicity at least two iff

9ABC Dξ
Aξ BξC

= 0, equivalently −Cabc[d ve]v
bvc

= 0; (13b)

of multiplicity at least three iff

9ABC Dξ
Aξ B

= 0, equivalently −Cabc[d ve]v
c

= 0; (13c)

and of multiplicity four iff

9ABC Dξ
A

= 0, equivalently −Cabcd v
c

= 0. (13d)

There are obvious analogous conditions on +Cabcd for ηA′

to be a WPS of a nonzero 9 A′ B′C ′ D′

.
The possible distinct types of 9 ABC D are described and coded as follows. With α, β, γ , and

δ distinct elements of PS,

{1111} : 9 ABC D
= α(AβBγ CδD)

{211} : 9 ABC D
= α(AαBγ CδD)

{22} : 9 ABC D
= α(AαBδCδD)

{31} : 9 ABC D
= α(AαBαCδD)

{4} : 9 ABC D
= αAαBαCαD. (14a)

With α, β distinct elements of P(CS) and γ , δ distinct elements of PS,

{1111} : 9 ABC D
= α(AαBγ CδD)

{1111} : 9 ABC D
= α(AαBβCβ

D)

{112} : 9 ABC D
= α(AαBδCδD)

{22} : 9 ABC D
= α(AαBαCαD). (14b)

Together with {−} to indicate vanishing 9 ABC D , there are 10 types for 9 ABC D . There are three
algebraically general types: {1111}, {1111}, and {1111}. All other cases are degenerate forms of
these three and are said to be algebraically special.

4. The Weyl curvature endomorphism

In this section I relate the endomorphism −Cab
cd of the space of ASD two-multivectors of

R2,2 to the endomorphism 9 A B
C D of S(AB), the space of totally symmetric elements of S ⊗ S.

Let Λ2 denote the space of two-multivectors of R2,2. The Hodge ∗ operator is an involution
of this six-dimensional space; its eigenspaces are, by definition, the spaces of SD and ASD
two-multivectors. This structure pertains to the tangent space at each point of a four-manifold M
equipped with a neutral metric g, indeed with a neutral structure as defined in [23]. In accordance
with the remark at the end of the introduction, I describe the situation in terms of multivectors,
rather than two-forms.



P.R. Law / Journal of Geometry and Physics 56 (2006) 2093–2108 2099

The spinor form of elements of Λ2
−, the space of ASD two-multivectors, is ΦABεA′ B′

, where
φAB

∈ S(AB). Hence Λ2
−

∼= S(AB) and the action of −Cab
cd on Λ2

− is given by that of 9 A B
C D

on S(AB). Explicitly, with Fab
= φABεA′ B′

and Hab
= ψ ABεA′ B′

in Λ2
−, take the induced scalar

product on Λ2
− to be

s(F, H) =
1
2

Fab Hab =
1
2
φABψABε

A′ B′

εA′ B′ = φABψAB . (15)

By (10), the null elements with respect to this scalar product are precisely the null elements in the
sense of Section 2. Since Λ2

−
∼= S(AB), we expect (S(AB), s) ∼= R1,2. Indeed, with respect to a

basis, the elements of S(AB) are represented by symmetric elements of R(2) (the space of which
I denote R+(2)) with φABφAB = 2 det(φAB). The subspace of diagonal symmetric matrices is
therefore isomorphic to R1,1 while the subspace of symmetric matrices with zero diagonal is
isomorphic to R0,1. The action of SL(2; R) on S(AB) is given by φAB

7→ αA
Cα

B
Dφ

C D , for
α ∈ SL(2; R), which with respect to a basis takes the matrix equation form

φ 7→ α.φ. τα . (16)

One way to see the significance of this action is as follows. The Clifford algebra R1,2 is

isomorphic to
(

R(2) 02
02 R(2)

)
. Indeed, with A, B and C as in (1) then F1 :=

(
A 02
02 −A

)
, F2 :=(

B 02
02 −B

)
and F3 :=

(
C 02
02 −C

)
generate R1,2 as an algebra and serve as a 9-ON basis for

a copy of R1,2 within R1,2. So, te1 + xe2 + ye3 ∈ R1,2 is identified with
(

Z 02
02 −Z

)
, where

Z =

(
−x t + y

y − t x

)
. With α, β ∈ R(2), the main involution of R1,2, i.e., the involution induced by

the negative identity transformation of the copy of R1,2 in R1,2, is given by
(
α 02
02 β

)Ď
=

(
β 02
02 α

)
while Clifford conjugation is given by

(
α 02
02 β

)−

=

(
∗α 02
02

∗β

)
, where ∗ denotes the taking of

adjoints with respect to R2
sp. It follows that R0

1,2
∼=

{(
α 02
02 α

)
: α ∈ R(2)

}
and Spin+(1, 2) ∼={(

α 02
02 α

)
: α ∈ SL(2; R)

}
. The vector representation of Spin+(1, 2) is(

α 02
02 α

) (
Z 02
02 −Z

) (
α 02
02 α

)−1

=

(
αZα−1 02

02 −αZα−1

)
.

It therefore suffices to consider the action as given by α.Z = αZα−1. Put

X AB
:= Z A

Cε
BC

=

(
t + y x

x t − y

)
= t12 + y(−B)+ xC ∈ R+(2). (17)

By the same argument as leads to (7), the vector representation may be written α.X = α.X. τα,
i.e., (16). Thus, under an SL(2; R) transformation of S, the induced action on S(AB) ∼= R1,2 is
the vector representation of Spin+(1, 2).

Given a spin frame {oA, ιA}, i.e., a basis of S satisfying ι · o = 1, the elements

∆AB
1 :=

1
√

2
(oAoB

+ ιAιB) ∆AB
2 :=

1
√

2
(oAoB

− ιAιB)

∆AB
3 :=

1
√

2
(oAιB + ιAoB) =

√
2o(AιB), (18)
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form a 9-ON basis for S(AB). When the given spin frame is transformed by an element of
SL(2; R) = Spin+(1, 2), the corresponding 9-ON basis is transformed by the induced element
of SO+(2, 2). Since the negative of the spin frame determines the same basis (18), there is a
one-to-one correspondence between spin frames, up to sign, of S and the elements of a time-
and-space orientation class of 9-ON bases of S(AB).

With the usual definitions: 90 := 9ABC DoAoBoC oD; 91 = 9ABC DoAoBoC ιD; 92 =

9ABC DoAoB ιC ιD; 93 = 9ABC DoAιB ιC ιD; 94 = 9ABC Dι
AιB ιC ιD; one has

9ABC D = 90ιAιB ιC ιD − 491o(AιB ιC ιD) + 692o(AoB ιC ιD)

− 493o(AoBoC ιD) +94oAoBoC oD. (19)

One may now compute the matrix representation of 9 A B
C D with respect to the basis (18):

9 =
1
2

90 + 292 +94 90 −94 2(91 +93)

−(90 −94) −(90 − 292 +94) −2(91 −93)

−2(91 +93) −2(91 −93) −492

 , (20)

which is evidently trace free and self-adjoint in the sense of R1,2 as it should be (both properties
can be directly verified abstractly for 9 A B

C D).

The elements Zab
i := ∆AB

i εA′ B′

, i = 1, 2, 3, form a 9-ON basis of Λ2
− and

−Cab
cd Z cd

i = 29 AB
C D∆C D

i εA′ B′

, (21)

whence −C = 29. Moreover, 9 AB
C Dφ

C D
= λφAB iff, with Fab

= φABεA′ B′

, −Cab
cd Fcd

=

2λFab, i.e., the eigenvalue properties of −Cab
cd are directly translatable into those of 9 A B

C D .
In terms of the notation of [21], −Cab

cd is W −. The curvature classification given there is based
on the possible Jordan canonical forms (JCF) of W −. This classification therefore carries over
immediately to 9 A B

C D . The goal is to relate this classification to that of (14).

The self-adjoint endomorphism 9 A B
C D (which I shall also denote simply 9) has three

(possibly complex, but in complex conjugate pairs) eigenvalues, λi , i = 1, 2, 3, from which
one can form the invariants

0 = tr(9) I :=

3∑
i=1

λ2
i = tr(92) J :=

3∑
i=1

λ3
i = tr(93). (22)

One may easily show that∑
i< j

λiλ j = −
1
2

I J = 3λ1λ2λ3

det(9 − λ1) = (λ− λ1)(λ− λ2)(λ− λ3) = λ3
−

1
2

Iλ−
J

3
. (23)

From (19) and (22) one finds, by squaring, respectively cubing, the first equation of (22),

I = 29094 − 89193 + 6(92)
2 J = 3 det(9) = 6

∣∣∣∣∣∣
90 91 92
91 92 93
92 93 94

∣∣∣∣∣∣ . (24)
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From (23), the condition for eigenvalues with multiplicity greater than one is I 3
= 6J 2. If 9 has

an eigenvalue with algebraic multiplicity three (necessarily real), the trace free condition entails
it must be zero. Hence, this condition is equivalent to I = J = 0.

5. Classification of the Weyl spinor

In this section I relate the classification of 9ABC D provided by (14) to the classification
induced by [21], treating the types of (14) one by one. First recall that the curvature types
introduced in [21] are based on the possible JCFs of an endomorphism of C3:λ 0 0

0 µ 0
0 0 ν

 λ 0 0
0 µ 1
0 0 µ

 λ 1 0
0 λ 1
0 0 λ

 .

Curvature type Ia occurs when W − has JCF of the first kind and all three eigenvalues (not
necessarily distinct) are real. Curvature type Ib is when there is a complex conjugate pair of
eigenvalues for this first JCF. Curvature type II occurs when W − has the second kind of JCF and
curvature type III when it has the third kind of JCF.

Suppose ξ A has components
(

1
z

)
with respect to a spin frame {oA, ιA}. Then

9ABC Dξ
Aξ BξCξ D

= 90 + 491z + 692z2
+ 493z3

+94z4

=: (α0 + α1z)(β0 + β1z)(γ0 + γ1z)(δ0 + δ1z) (25)

where the factorization is valid over C and defines the WPSs up to scale.

5.1. Type {1111}

With 9 ABC D
= α(AβBγ CδD), α, β, γ , δ ∈ S, one can scale the WPSs so that we may

suppose

αA
= 6η(oA

+ χιA) β A
= oA γ A

= λoA
+ ιA δA

= ιA, (26)

where {oA, ιA} is a spin frame, and η, χ , λ ∈ R are nonzero, satisfying χλ 6= 1 so that γ · α 6= 0
(the factor 6 being for notational convenience). This form does, however, allow αA to become
coincident with any of the other WPSs by violating the constraints on the scalars. Indeed, in
5.1–5.3, the forms chosen to describe 9 ABC D are of course not uniquely determined, but are
chosen to display degenerations that can occur as WPSs are made to coincide. Various other
forms also serve this purpose.

From (25), one obtains with respect to the spin frame in (26),

90 = 0 91 = −
3ηχ

2
92 = η(λχ + 1) 93 = −

3ηλ
2

94 = 0. (27)

From (24) one finds,

I = 6η2((λχ)2 − λχ + 1) J = −3η3(λχ + 1)(λχ − 2)(2λχ − 1), (28)

whence from (23)

λ1 = η(1 − 2λχ) λ2 = η(1 + λχ) λ3 = η(λχ − 2). (29)
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Thus, 9 has three real eigenvalues which are distinct when 9 ABC D is nonzero and type {1111},
i.e., no pair of α, β, γ and δ in (26) coincide in direction. Thus, type {1111} is of curvature type
Ia, i.e., 9 has diagonal real JCF. Since 9 is self-adjoint, there is another spin frame {oA, ιA} for
which the associated basis (18) is an eigenbasis, so 9 is diagonalized: 9 = diag(λ1, λ2, λ3).
Setting this diagonal form equal to (20) yields

90 =
λ1 − λ2

2
91 = 0 92 = −

λ3

2
93 = 0 94 =

λ1 − λ2

2
(30)

resulting in a canonical form

9 ABC D
=
λ1 − λ2

2
(ιAιB ιC ιD + oAoBoC oD)− 3λ3o(AoB ιC ιD). (31)

To emphasize the difference between the spin frames yielding (27) and (30), the former
determines WPSs of 9 ABC D while the latter determines the eigenvectors of 9 through (18).

5.2. Type {1111}

With 9 ABC D
= α(AαBγ CδD), α ∈ CS, γ , δ ∈ S, take ιA := δA. Using the freedom to scale

α by eiθ , one can arrange that =(αA) ∝ ιA without changing the given symmetric product. By
(9), =(α) · R(α) 6= 0, so one can choose a spin frame {oA, ιA} so that

αA
=

√
6η(oA

+ iχιA) γ A
= λoA

+ ιA δA
= ιA, (32)

where η, χ , λ ∈ R are nonzero. Relaxing these conditions on the scalars results in coincidences
of the WPSs.

From (25), one obtains with respect to the spin frame in (32)

90 = 6η2χ2 91 = −
3λη2χ2

2
92 = η2 93 = −

3λη2

2
ψ4 = 0. (33)

From (24)

I = 6η4(1 − 3λ2χ2) J = −6η6(1 + 9λ2χ2) (34)

whence from (23)

λ1 = η2(1 + 3iλχ) λ2 = η2(1 − 3iχ) λ3 = −2η2. (35)

Thus, 9 has three distinct eigenvalues, one real and a complex conjugate pair, whence 9 is of
curvature type Ib. In this case, there is another spin frame {oA, ιA} which determines a 9-ON
frame (18) wrt which 9 has matrix representation R(λ1) =(λ1) 0

−=(λ1) R(λ1) 0
0 0 λ3

 ,

see [21]. Equating this expression to (20) yields, noting λ2 = λ1,

90 =
λ1 − λ2

2i
91 = 0 92 = −

λ3

2
93 = 0 94 = −

λ1 − λ2

2i
, (36)
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resulting in a canonical form

9 ABC D
=
λ1 − λ2

2i
(ιAιB ιC ιD − oAoBoC oD)− 3λ3o(AoB ιC ιD). (37)

Again, the spin frame of (33) determines the WPSs while the spin frame of (36) determines
the eigenvectors of 9. In particular, ∆AB

3 is an eigenvector for λ3 while ∆AB
1 + i∆AB

2 is an
eigenvector for λ1.

5.3. Type {1111}

With 9 ABC D
= α(AαBβCβ

D)
, α, β ∈ CS, scale β A by eiθ so that =(β A) ∝ =(αA). Then

one can choose a spin frame {oA, ιA} so that

αA
= oA

+ iχιA β A
=

√
6(λoA

+ ηιA + iριA), (38)

where χ , λ, η and ρ ∈ R, χ and ρ nonzero, and η and ρ ∓ λχ are not both zero (so β · α,
respectively β · α, are nonzero).

From (25), one obtains with respect to the spin frame in (38),

90 = 6χ2(η2
+ ρ2) 91 = −

3ηλχ2

2
92 = η2

+ ρ2
+ χ2λ2

=: ω

93 = −
3ηλ

2
94 = 6λ2. (39)

From (24)

I = 6(ω2
+ 12χ2λ2ρ2) J = 6ω(36χ2λ2ρ2

− ω2), (40)

whence from (23)

λ1 = ω + 6χλρ λ2 = ω − 6χλρ λ3 = −2ω. (41)

Granted the constraints on the scalars χ , λ, η and ρ, these three eigenvalues are real and distinct.
Thus, 9 is of curvature type Ia. The canonical form is therefore exactly as for type {1111}, i.e.,
(30) and (31) but with (41) defining the eigenvalues.

5.4. Type {211}

Type {211} is a degenerate form of {1111}; for example put χ = 0 to get β ∝ α; λ = 0 to
get γ ∝ δ; other coincidences are also possible. It is also a degenerate form of {1111} on putting
χ = 0. χ and λ play symmetrical roles in (27). Restricting attention to χ = 0 in each of {1111}

and {1111}, one obtains essentially the same result (the only difference being that α = 6β from
{1111} while β = α from {1111}). Working with the form obtained from {1111} with χ = 0,

90 = 91 = 94 = 0 92 = η 93 = −3ηλ/2, (42)

i.e.,

9 ABC D
= 6η(o(AoB ιC ιD) + λo(AoBoC ιD)). (43)
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From (28), I = 6η2 and J = −6η3 so I 3
= 6J 2 indicating eigenvalues with multiplicity greater

than one. Indeed, from (29)

λ1 = λ2 = η λ3 = −2η. (44)

Indeed, substituting (42) into (20) yields a matrix with eigenvalues: η of algebraic multiplicity
two and geometric multiplicity one with eigenvector ∆1 + ∆2; −2η of algebraic and geometric
multiplicities one with eigenvector ∆1 + ∆2 + 2∆3/λ; where ∆1, ∆2, ∆3 are as in (18) for the
spin frame yielding (42). These properties determine a JCF characterizing curvature type II.

Note that since this JCF is different to that underlying the form (31), setting λ1 = λ2 in
(31) does not yield a valid form for type {211}. If one rescales the spin frame underlying (43):
oA

7→ µ−1oA, ιA 7→ µιA, for some nonzero real µ, the factor λ in (43) can be absorbed to yield
a canonical form for {211}, viz., put λ = 1 in (43).

5.5. Type {112}

Type {112} can be obtained from either {1111} (λ = 0) or {1111} (ρ = 0). The latter yields
a more general expression, but it can always be recast into the form obtained from {1111} by
suitable scaling of the WPSs. Putting λ = 0 in (33) yields

90 = 6η2χ2 92 = η2 91 = 93 = 94 = 0, (45)

so

9 ABC D
= 6η2(χ2ιAιB ιC ιD + o(AoB ιC ιD)). (46)

From (34), I = 6η4 and J = −6η6 so I 3
= 6J 2. Putting λ = 0 in (35) gives

λ1 = η2
= λ2 λ3 = −2η2. (47)

Indeed, substituting (45) into (20) yields a matrix whose eigenvalues are: η2 of algebraic
multiplicity two and geometric multiplicity one with eigenvector ∆1 − ∆2; −2η2 of algebraic
and geometric multiplicities one with eigenvector ∆3. Hence, this information also determines a
JCF characterizing curvature type II.

The form (37), with λ1 = λ2 is not valid for {112}, being based on a distinct JCF. Rescaling
the spin frame in (46) allows one to absorb the χ2 factor yielding a canonical form for {112},
viz., put χ2

= 1 in (46).

5.6. Type {22}

This type can be obtained from either {211} or {112}. Considering the former possibility, for
example, putting χ = λ = 0 in (27) results in 92 = η as the only nonzero dyad component of
9ABC D , whence I = 6η2, J = −6η3, and I 3

= 6J 2. From (29) or (44)

λ1 = λ2 = η λ3 = −2η. (48)

Indeed, (20) yields a diagonal matrix 9 = diag(η, η,−2η) indicating curvature type Ia.
Of course, 9 ABC D

= 6ηo(AoB ιC ιD) is a canonical form for type {2, 2}. Indeed, since the
curvature type is Ia, the canonical form (31) must be valid with λ1 = λ2 and λ3 = −2η. The basis
(18) associated with the spin frame giving this canonical form is, by construction, an eigenbasis,
with ∆i an eigenvector of λi , i = 1, 2, 3.
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5.7. Type {22}

For type {22}, put ρ = χ , η = 0 and λ = 1 in (38) and (39) to yield

90 = 6χ4 92 = 2χ2 91 = 93 = 0 94 = 6. (49)

One finds that I 3
= 6J 2 and from (41)

λ1 = 8χ2 λ2 = λ3 = −4χ2. (50)

Indeed substituting (49) into (20) yields a matrix whose eigenvalues are: 8χ2 of algebraic and
geometric multiplicities one with eigenvector (1 + χ2)∆1 + (1 − χ2)∆2; −4χ2 with algebraic
and geometric multiplicities two with eigenvectors ∆3 and (1−χ2)∆1 + (1+χ2)∆2; ∆1, ∆2∆3
as in (18) for the spin frame determining (49). Thus, 9 is of curvature type Ia.

It follows that the canonical form (31) must be valid for type {22} upon setting λ2 = λ3, with
the result, using the values (50),

9 ABC D
= 6χ2(oAoBoC oD

+ ιAιB ιC ιD + 2o(AoB ιC ιD)). (51)

It is straightforward to confirm that the basis (18) for this spin frame is indeed an eigenbasis,
with ∆i an eigenvector of λi .

5.8. Type {31}

Type {31} can be obtained from type {1111}. It is convenient to take a slightly different form
than (26) to describe this degeneration; namely

αA
= 6η(oA

+ χιA) β A
= oA γ A

= oA
+ µιA δA

= ιA, (52)

which, in effect is obtained from (26) by putting µ = λ−1. The expressions corresponding to
(27)–(29) are easily obtained, either directly, or by noting that one need only insert a factor of
µ into each of (27), whence µ2 into I and µ3 into J in (28) and then a factor of µ into each of
(29), with the understanding that µλ = 1. Degeneration to type {31} is then achieved by setting
χ = µ = 0. It follows: that 93 = −3η/2 is the only nonzero dyad component of the type {31}

form obtained so

9 ABC D
= 6ηo(AoBoC ιD); (53)

that I = J = 0; and that zero is the single eigenvalue. Indeed, computing the matrix (20) for 9
with these dyad components, one easily finds that zero is the only eigenvalue, but has geometric
multiplicity only one, with eigenvector ∆1 + ∆2 in fact. It follows that the curvature type is III.

Note that the freedom to rescale a spin frame permits one to absorb the scalar coefficient in
(53) to give a canonical form o(AoBoC ιD) for type {31}.

5.9. Type {4}

Type {4} obviously possesses the canonical form

9 ABC D
= ±oAoBoC oD. (54)

Computing (20) for this form (94 = ±1 is the only nonzero dyad component, so I = J = 0), one
obtains a matrix whose only eigenvalue is zero of geometric multiplicity two, with eigenvectors
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∆1 + ∆2 and ∆3. It follows that the curvature type is II (indeed 9 is already in the form
characteristic of curvature type II with respect to a 9-ON basis of R1,2 given in [21]).

Type {4} can arise by degeneration directly from types {31}, {22} and {22}. One must employ
noncanonical forms for {31}, {22} and {22} for an explicit description, however. For example,
type {4} can be obtained explicitly from type {22} by putting χ = 0 in (49) and one sees two
distinct eigenvectors become coincident. On the other hand, putting ρ = 0 in (38) passes from
{1111} to {112}, then setting χ = 0 yields a noncanonical form of {22}, which with η = 0
reduces to type {4}.

The particular noncanonical forms I have employed are certainly not exhaustive for describing
degenerations; in particular, they cannot describe the degeneration through {31} to {4}. But other
forms could of course be constructed to do so if desired.

The classification of the Weyl spinor is now complete and summarized in the following
diagram, where m denotes the algebraic and M the geometric multiplicity of an eigenvalue:

#Eigenvalues
Multiplicities

3
m = M = 1 each

{1111}Ia {1111}Ib {1111}Ia
Algebraically

General
↘ ↙ ↘ ↙

2
m = 2 M = 1
m = M = 1

{211}II {112}II

y I 3
= 6J 2

6= 0

↘ ↙

2
m = M = 2
m = M = 1

{22}Ia {22}Ia I 3
= 6J 2

6= 0y ↘ ↙

1
m = 3 M = 2

{4}II I = J = 0

↗

1
m = 3 M = 1

{31}III −→ I = J = 0

In [21], for each curvature type I gave a matrix representation with respect to a9-ON basis of
R1,2 ∼= Λ2

−
∼= S(AB) as an alternative form to the corresponding JCF. I close by asking to what

extent those forms are canonical. For curvature type Ia, the JCF is real diagonal; equating to (20)
to determine a form for 9 ABC D is exactly what was done in 5.1 and 5.3 for {1111} and {1111}

respectively. For curvature type Ib, the JCF is diagonal over C. Transforming to a real 9-ON
basis and equating to (20) is exactly what was done in 5.2 for {1111}. Thus, the characteristic
forms given in [21] for curvature types Ia and Ib determine the canonical forms given for9 ABC D

in 5.1–5.3. The algebraically special curvature type Ia forms, viz., {22} and {22}, are obtained
from (31) by imposing the appropriate conditions on the eigenvalues.

For curvature type II, there are two forms given in [21]:µ+ 1/2 −1/2 0
1/2 µ− 1/2 0
0 0 λ

 µ− 1/2 1/2 0
−1/2 µ+ 1/2 0

0 0 λ

 .

Equating the first to (20) yields9 ABC D
= 6µo(AoB ιC ιD)+oAoBoC oD . Under a suitable spin

transformation, this form is equivalent to (46) (with χ = 1), i.e., type {112}. Equating the second
displayed matrix to (20) yields 9 ABC D

= 6µo(AoB ιC ιD) − oAoBoC oD , which, under a suitable
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spin transformation, is equivalent to (43) (with λ = 1), i.e., type {211}. Thus, the instances of
(20) dictated by (46) (with χ = 1) and (43) (with λ = 1) are, at least from a spinorial point of
view, more canonical than the forms given for curvature type II in [21]. The canonical forms (54)
of the algebraically special form of curvature type II, {4}, are obviously the special cases of the
forms derived from [21] with 0 = µ = −λ/2.

The matrix representation given for curvature type III in [21] determines, via (20), an
expression for 9 ABC D of the form (53). Thus, it is not quite canonical, but only a scaling of
the spin frame is required to achieve such.

The geometry and symmetries of the Weyl curvature spinor and other applications will be
treated elsewhere.
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